The Brightest Stars, as Seen from the Earth
(light years)Apparent MagnitudeAbsolute MagnitudeSpectral Type
Sun--26.724.8G2V
SiriusAlpha CMa8.6-1.461.4A1Vm
CanopusAlpha Car74-0.72-2.5A9II
Rigil KentaurusAlpha
Cen4.3-0.274.4G2V + K1V
ArcturusAlpha Boo34-0.040.2K1.5IIIp
VegaAlpha Lyr250.030.6A0Va
CapellaAlpha Aur410.080.4G6III + G2III
RigelBeta Ori~14000.12-8.1B81a
ProcyonAlpha CMi11.40.382.6F5IV-
AchernarAlpha Eri690.46-1.3B3Vnp
BetelgeuseAlpha Ori~14000.50 (var.)-7.2M2Iab
HadarBeta Cen3200.61 (var.)-4.4B1III
AcruxAlpha Cru5100.76-4.6B0.5Iv + B1Vn
AltairAlpha Aql160.772.3A7Vn
AldebaranAlpha Tau600.85 (var.)-0.3K5III
AntaresAlpha Sco~5200.96 (var.)-5.2M1.5Iab
SpicaAlpha Vir2200.98 (var.)-3.2B1V
PolluxBeta Gem401.140.7K0IIIb
FomalhautAlpha PsA221.162.0A3Va
BecruxBeta Cru4601.25 (var.)-4.7B0.5III
DenebAlpha Cyg15001.25-7.2A2Ia
RegulusAlpha Leo691.35-0.3B7Vn
AdharaEpsilon CMa5701.50-4.8B2II
CastorAlpha Gem491.570.5A1V + A2V
GacruxGamma Cru1201.63 (var.)-1.2M3.5III
ShaulaLambda Sco3301.63 (var.)-3.5B1.5IV
Magnitudes
The magnitude scale was invented by an ancient Greek astronomer named Hipparchus in about 150 B.C. He ranked the stars he could see in terms of their brightness, with 1 representing the brightest down to 6 representing the faintest. Modern astronomy has extended this system to stars brighter than Hipparchus' 1st magnitude stars and ones much, much fainter than 6.
As it turns out, the eye senses brightness logarithmically, so each increase in 5 magnitudes corresponds to a decrease in brightness by a factor 100. The absolute magnitude is the magnitude the stars would have if viewed from a distance of 10 parsecs or some 32.6 light years. Obviously, Deneb is intrinsically very bright to make this list from its greater distance. Rigel, of nearly the same absolute magnitude, but closer, stands even higher in the list. Note that most of these distances are really nearby, on a cosmic scale, and that they are generally uncertain by at least 20%. All stars are variable to some extent; those which are visibly variable are marked with a "v".
What are apparent and absolute magnitudes? Apparent is how bright the appear to us in the sky. The scale is somewhat arbitrary, as explained above, but a magnitude difference of 5 has been set to exactly a factor of 100 in intensity. Absolute magnitudes are how bright a star would appear from some standard distance, arbitrarily set as 10 parsecs or about 32.6 light years. Stars can be as bright as absolute magnitude -8 and as faint as absolute magnitude +16 or fainter. There are thus (a very few) stars more than 100 times brighter than Sirius, while hardly any are known fainter than Wolf 356.
0 Comments